62,557 research outputs found

    A suggested search for 207Pb nuclear Schiff moment in PbTiO3 ferroelectric

    Full text link
    We suggest two types of experiments, NMR and macroscopic magnetometry, with solid PbTiO3 to search for the nuclear Schiff moment of 207Pb. Both kinds of experiments promise substantial improvement over the presently achieved sensitivities. Statistical considerations show that the improvement of the current sensitivity can be up to 10 orders of magnitude for the magnetometry experiment and up to 6 orders of magnitude for the NMR experiment. Such significant enhancement is due to the strong internal electric field of the ferroelectric, as well as due to the possibility to cool the nuclear-spin subsystem in the compound down to nanokelvin temperatures.Comment: 4 pages; revised sensitivity estimate for NMR experimen

    Superconductivity from purely repulsive interactions in the strong coupling approach : Application of the SU(2) slave-rotor theory to the Hubbard model

    Full text link
    We propose a mechanism of superconductivity from purely repulsive interactions in the strong coupling regime, where the BCS (Bardeen-Cooper-Schrieffer) mechanism such as the spin-fluctuation approach is difficult to apply. Based on the SU(2) slave-rotor representation of the Hubbard model, we find that the single energy scale for the amplitude formation of Cooper pairs and their phase coherence is separated into two energy scales, allowing the so called pseudogap state where such Cooper pairs are coherent locally but not globally, interpreted as realization of the density-phase uncertainty principle. This superconducting state shows the temperature-linear decreasing ratio of superfluid weight, resulting from strong phase fluctuations

    New experimental limits on non-Newtonian forces in the micrometer-range

    Full text link
    We report measurements of the short-range forces between two macroscopic gold-coated plates using a torsion pendulum. The force is measured for separations between 0.7 μ\mum and 7 μ\mum, and is well described by a combination of the Casimir force, including the finite-temperature correction, and an electrostatic force due to patch potentials on the plate surfaces. We use our data to place constraints on the Yukawa-type "new" forces predicted by theories with extra dimensions. We establish a new best bound for force ranges 0.4 μ\mum to 4 μ\mum, and, for forces mediated by gauge bosons propagating in (4+n)(4+n) dimensions and coupling to the baryon number, extract a (4+n)(4+n)-dimensional Planck scale lower limit of M∗>70M_*>70 TeV.Comment: 4 pages, 2 figure

    Tunnelling series in terms of perturbation theory for quantum spin systems

    Get PDF
    Considered is quantum tunnelling in anisotropic spin systems in a magnetic field perpendicular to the anisotropy axis. In the domain of small field the problem of calculating tunnelling splitting of energy levels is reduced to constructing the perturbatio n series with degeneracy, the order of degeneracy being proportional to a spin value. Partial summation of this series taking into account ''dangerous terms'' with small denominators is performed and the value of tunnelling splitting is calculated with allowance for the first correction with respect to a magnetic field.Comment: 7 pages, REVTeX 3.

    Foam-like compression behavior of fibrin networks

    Get PDF
    The rheological properties of fibrin networks have been of long-standing interest. As such there is a wealth of studies of their shear and tensile responses, but their compressive behavior remains unexplored. Here, by characterization of the network structure with synchronous measurement of the fibrin storage and loss moduli at increasing degrees of compression, we show that the compressive behavior of fibrin networks is similar to that of cellular solids. A non-linear stress-strain response of fibrin consists of three regimes: 1) an initial linear regime, in which most fibers are straight, 2) a plateau regime, in which more and more fibers buckle and collapse, and 3) a markedly non-linear regime, in which network densification occurs {{by bending of buckled fibers}} and inter-fiber contacts. Importantly, the spatially non-uniform network deformation included formation of a moving "compression front" along the axis of strain, which segregated the fibrin network into compartments with different fiber densities and structure. The Young's modulus of the linear phase depends quadratically on the fibrin volume fraction while that in the densified phase depends cubically on it. The viscoelastic plateau regime corresponds to a mixture of these two phases in which the fractions of the two phases change during compression. We model this regime using a continuum theory of phase transitions and analytically predict the storage and loss moduli which are in good agreement with the experimental data. Our work shows that fibrin networks are a member of a broad class of natural cellular materials which includes cancellous bone, wood and cork
    • …
    corecore